Extensions 1→N→G→Q→1 with N=S3xC32 and Q=C32

Direct product G=NxQ with N=S3xC32 and Q=C32
dρLabelID
S3xC34162S3xC3^4486,256

Semidirect products G=N:Q with N=S3xC32 and Q=C32
extensionφ:Q→Out NdρLabelID
(S3xC32):C32 = C3xS3xHe3φ: C32/C3C3 ⊆ Out S3xC3254(S3xC3^2):C3^2486,223

Non-split extensions G=N.Q with N=S3xC32 and Q=C32
extensionφ:Q→Out NdρLabelID
(S3xC32).1C32 = S3xC3wrC3φ: C32/C3C3 ⊆ Out S3xC32186(S3xC3^2).1C3^2486,117
(S3xC32).2C32 = S3xHe3.C3φ: C32/C3C3 ⊆ Out S3xC32546(S3xC3^2).2C3^2486,120
(S3xC32).3C32 = S3xHe3:C3φ: C32/C3C3 ⊆ Out S3xC32546(S3xC3^2).3C3^2486,123
(S3xC32).4C32 = S3xC3.He3φ: C32/C3C3 ⊆ Out S3xC32546(S3xC3^2).4C3^2486,124
(S3xC32).5C32 = C3xS3x3- 1+2φ: C32/C3C3 ⊆ Out S3xC3254(S3xC3^2).5C3^2486,225
(S3xC32).6C32 = S3xC9oHe3φ: C32/C3C3 ⊆ Out S3xC32546(S3xC3^2).6C3^2486,226
(S3xC32).7C32 = S3xC92φ: trivial image162(S3xC3^2).7C3^2486,92
(S3xC32).8C32 = S3xC32:C9φ: trivial image54(S3xC3^2).8C3^2486,95
(S3xC32).9C32 = S3xC9:C9φ: trivial image162(S3xC3^2).9C3^2486,97
(S3xC32).10C32 = S3xC32xC9φ: trivial image162(S3xC3^2).10C3^2486,221

׿
x
:
Z
F
o
wr
Q
<